If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+142=-36x
We move all terms to the left:
2x^2+142-(-36x)=0
We get rid of parentheses
2x^2+36x+142=0
a = 2; b = 36; c = +142;
Δ = b2-4ac
Δ = 362-4·2·142
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{10}}{2*2}=\frac{-36-4\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{10}}{2*2}=\frac{-36+4\sqrt{10}}{4} $
| 15+6x=x+10 | | 2l+62*2=274 | | -9=7+7a+a | | 9(x=3)=81 | | a-3=33 | | 9(4+-2n)-10=2(10+-8n)+4n | | 16=-5x+7x | | f(20)=75+25 | | -3k+5k=-14 | | 4h-24=-4 | | 10x+13=8x+15 | | 4z-2+4z-2+3z+3z=122 | | 30=5x+3+12x+5 | | 10-2(x+6)=52 | | -7x-17=-3x-5 | | (5)3^√(x+1)+10=35 | | 7^x=49^x+5 | | 49.1=b/4 | | {d}{3}=-6 | | 2(3+7)+2(3x+7)=20 | | 50-35x=45 | | 5x+1=9x+7÷2 | | 9=v/5-9 | | 5x-1=9x+7÷2 | | 3/4n-19=1 | | d–4+ –16=–14 | | 3x+3=-1+1x+11 | | 1/4p—3=-8 | | (K-2/5)=11j | | -g=19.2 | | 10g+10=10g | | x2-13x-484=0 |